Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 90(2 suppl 1): 1929-1944, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30133568

RESUMO

Fe(II) and Fe(III) have distinct chemical and biological functions. Consequently, it is more important to determine the fraction of both oxidation state that knowing the total iron concentration in a sample. However, green methods for iron speciation are still limited. This work uses aqueous two-phase system, a safe alternative to liquid-liquid extraction, to perform the chemical speciation of iron. This method is based on the reaction of Fe(II) with 1,10-phenanthroline extractant, forming a complex of Fe(II)-phenanthroline that concentrates in the top phase of the system. The Fe(III) specie concentrated in the bottom phase of the system. Iron speciation was affected by the electrolyte nature, macromolecule type, quantity of phenanthroline added, and pH. The system formed by PEO1500 + Na3C6H5O7 + H2O at pH 6.00, containing 5.00 mmol kg-1 of phenanthroline, was successfully used to separate the iron species before determination by flame atomic absorption spectrometry. Under these optimal conditions, a separation factor of 233 was obtained between Fe(II) and Fe(III) with extraction percentages of (95.1 ± 1.0)% and (7.68 ± 0.50)%, respectively The proposed method was successfully applied for iron speciation in water samples, and provided recovery percentages ranging between 90 and 106%.

2.
J Phys Chem B ; 110(46): 23540-6, 2006 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17107209

RESUMO

Ions are known to concentrate in the salt-enriched phase of aqueous two-phase systems, with the only known exception being the pertechnetate anion, TcO(4)(-). We have discovered a second ion, nitroprusside anion (NP), which is markedly transferred from the salt phase to the polymer phase. The partitioning behavior of [Fe(CN)(5)NO](2-) anion was investigated in ATPS formed by poly(ethylene oxide) of molar mass 3350 and 35000 g mol(-1), and different sulfate salts (Na(2)SO(4), Li(2)SO(4), and MgSO(4)). On the basis of a model, the nitroprusside high affinity for the macromolecular phase was attributed to an enthalpic specific interaction between the anion and ethylene oxide unit. Partition coefficients increased exponentially with tie-line length increase, reaching values as high as 1000 and showing a relationship very dependent on the salt nature, but independent of the polymer molar mass.


Assuntos
Ferrocianetos/química , Nitroprussiato/química , Polietilenoglicóis/química , Sulfatos/química , Água/química , Ânions , Soluções/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...